Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue.
نویسندگان
چکیده
We isolated a cDNA from human brain encoding a purinergic receptor that shows a high degree of homology to the rat P2X4 receptor (87% identity). By fluorescence in situ hybridization, the human P2X4 gene has been mapped to region q24.32 of chromosome 12. Tissue distribution analysis of human P2X4 transcripts demonstrates a broad expression pattern in that the mRNA was detected not only in brain but also in all tissues tested. Heterologous expression of the human P2X4 receptor in Xenopus laevis oocytes and human embryonic kidney 293 cells evoked an ATP-activated channel. Simultaneous whole-cell current and Fura-2 fluorescence measurements in human embronic kidney 293 cells transfected with human P2X4 cDNA allowed us to determine the fraction of the current carried by Ca2: this was approximately 8%, demonstrating a high Ca2+ permeability. Low extracellular Zn2+ concentrations (5-10 microM) increase the apparent gating efficiency of human P2X4 by ATP without affecting the maximal response. However, raising the concentration of the divalent cation (> 100 microM) inhibits the ATP-evoked current in a non-voltage-dependent manner. The human P2X4 receptor displays a very similar agonist potency profile to that of rat P2X4 (ATP > > 2-methylthio-ATP > or = CTP > alpha, beta-methylene-ATP > dATP) but has a notably higher sensitivity for the antagonists suramin, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, and bromphenol blue. Chimeric constructs between human and rat isoforms as well as single-point mutations were engineered to map the regions responsible for the different sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2'4'-disulfonic acid.
منابع مشابه
Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels.
P2X4 is an ATP-gated nonselective cation channel highly permeable to calcium. There is increasing evidence that this homomeric purinoceptor, which is expressed in several neuronal and immune cell types, is involved in chronic pain and inflammation. The current paucity of unambiguous pharmacological tools available to interrogate or modulate P2X4 function led us to pursue the search for selectiv...
متن کاملConserved extracellular cysteines differentially regulate the potentiation produced by Zn2+ in rat P2X4 receptors.
One feature of the amino acid sequence of P2X receptors identified from mammalian species, Xenopus laevis and zebrafish is the conservation of ten cysteines in the extracellular loop. Little information is available about the role of these conserved ectodomain cysteines in the function of P2X receptors. Here, we investigated the possibility that ten conserved cysteine residues in the extracellu...
متن کاملPurinergic receptor expression in neuronal, bladder smooth muscle and urothelial cells: characterization and inhibition by low molecular weight antagonists
.....................................................................................................3 Acknowledgements ...................................................................................4 Publications arising from this thesis .......................................................5 Prologue ...........................................................................................
متن کاملCentral P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor.
Ionotropic ATP receptors are widely expressed in mammalian CNS. Despite extensive functional characterization of neuronal homomeric P2X receptors in heterologous expression systems, the subunit composition of native central P2X ATP-gated channels remains to be elucidated. P2X4 and P2X6 are major central subunits with highly overlapping mRNA distribution at both regional and cellular levels. Whe...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 51 1 شماره
صفحات -
تاریخ انتشار 1997